I 🗙 OAK

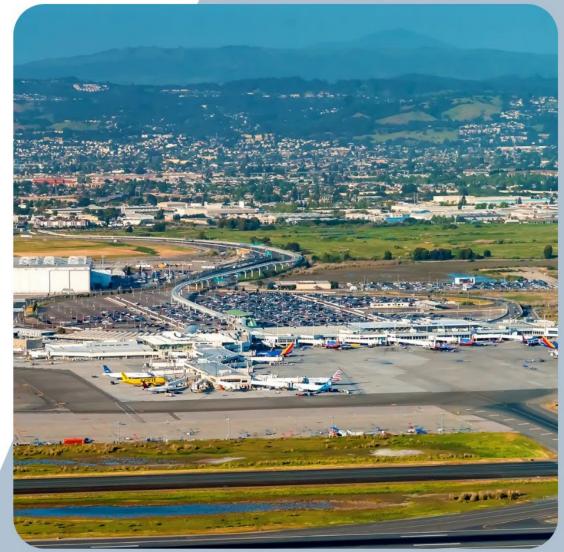
The Oakland Airport-Community Noise Management Forum

Aircraft Noise 101 Virtual Workshop

Wednesday, April 9, 2025, 6:30 - 8:00 PM

Topics

- OAK Noise History Timeline
- OAK Noise Abatement
- Federal and State Noise Regulations
- Noise Terminology
- Aircraft Noise Sources and Propagation
- Measurements vs. Modeling
- Questions

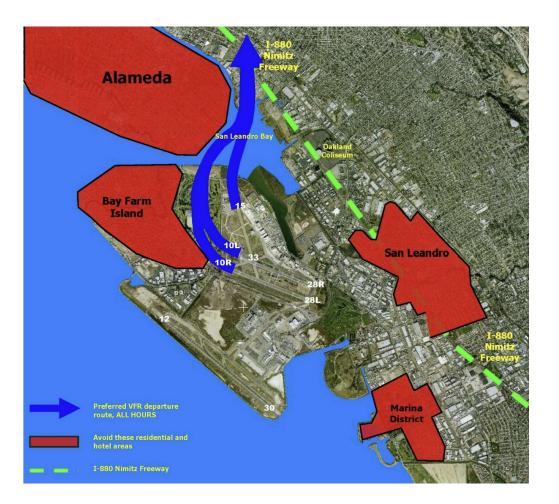

OAK Noise Program History Timeline

 ✤ Noise Abatement Task Force established ✦ Engine Run Up Policy established ✦ North Field Use Restrictions 	monitoring t → North Field N → North Field F Research Gro → Oakland Airp	 → Alameda, San Leandro, San Lorenzo noise monitoring terminals installed → North Field Noise Abatement Runway Signs → North Field Flight Research/Pattern Research Group → Oakland Airport-Community Noise Management Forum 		ise Office website updated and Complaint Power bi introduced
 ≁ North Field V ≁ South Field C Procedures ≁ North Field U Update 	argo	 → Alameda Sound Insulation → North Field SALAD depart → Ground Run-Up Enclosure → Runway 12 Quiet Departu → Airport Noise Manageme → Additional remote noise r installed 	cure e – Hush House ure nt website	 → Viewpoint App → The OAK Noise Offic website refreshed → EMU terminals and ANOMS upgrade → Insightful platform c

OAK Noise Abatement

OAK Voluntary Noise Abatement Program

- Designed to minimize aircraft noise in the surrounding communities
- Developed through meetings with:
 - Local communities
 - FAA representative
 - Aircraft operators, e.g., airlines and pilots
- Pilot education is the cornerstone
- Monitoring system separates fact from fiction
- The Port operates the airport with the full integration of noise abatement



OAK Flight Track/Noise Monitoring

- The airport operates an Aircraft Noise and Operations Monitoring System (ANOMS[™]) to
 - Monitor compliance with voluntary noise abatement procedures
 - Address community and stakeholder concerns
 - Used to respond to community and stakeholder request for aircraft noise information
- The airport maintains 14 permanent noise monitors located throughout local communities and an additional one located within the airport Ground Runup Enclosure (GRE)

North Field Preferred VFR Departure Noise Abatement Runway 28L/R & 33

Runway 28L/R

- VFR departures should include a right crosswind or additional downwind segment avoiding Bay Farm Island and the main island of Alameda. (propeller/turboprop)
- Runway 33
 - Make right northerly turn over San Leandro Bay until reaching I-880
 - No straight-out or left crosswind/downwind departures

North Field Night Departure Noise Abatement Runway 28L/R &10L/R

• Runway 10R

- VFR and IFR departures use 180degree departure heading for E/SE departures or for N/NE departures
- No left turn departures
- Runway 28R
 - SALAD ONE departure (propeller/turboprop); do not use the OAK 313 or 310 heading departure
 - Right crosswind over San Leandro Bay until reaching I-880 (propeller/turboprop)
 - No straight-out departures

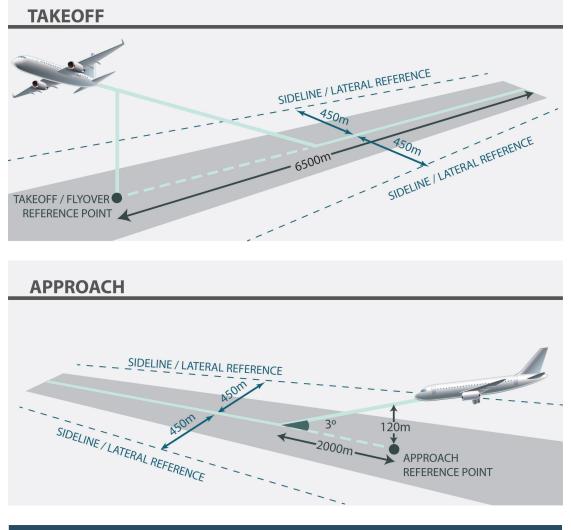
North Field Touch & Go Noise Abatement Runway10R/28L

• Standard traffic pattern altitude at approximately 600' above ground level (AGL).

Ground Run-Up Enclosure (GRE)

- Three-sided structure on the OAK airfield designed to reduce noise from aircraft engine testing
 - Opened in 2002 First in California
 - Sized to fit up to a widebody commercial jet aircraft, e.g., Boeing 747
 - Provides up to 17 dB noise reduction from engine run-ups

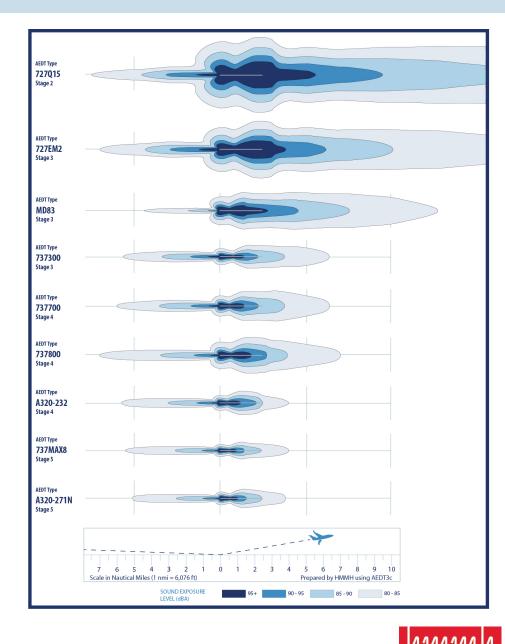
Federal and State Noise Regulations


Federal Noise Regulations

Statute	Aircraft Noise Related Purpose	Most Relevant FAA Regulation(s)	
Aircraft Noise and Sonic Boom Act of 1968	Authorizes FAA to prescribe standards for measurement of aircraft noise and establish regulations to abate noise	14 CFR parts 36 and 91	
National Environmental Policy Act of 1969 (NEPA)	Directs all federal executive agencies to assess all environmental effects of proposed federal agency actions	FAA Orders 1050.1F, 5050.4B	
The Noise Control Act of 1972 (Noise Act)	Amends 1968 act to add consideration of public health and welfare and to add EPA to the rulemaking process for aircraft noise and sonic boom standards	None directly; EPA responsibility	
Aviation Safety and Noise Abatement Act of 1979 (ASNA)	Directs FAA to establish single system to measure noise and determine exposure of people to noise, and identify land uses normally compatible with various noise levels	14 CFR part 150	
Airport and Airway Improvement Act of 1982	Authorizes FAA funding for noise mitigation/compatibility planning and projects and establishes noise compatibility requirements for FAA-funded airport development	FAA Airport Improvement Program	
Airport Noise and Capacity Act of 1990 (ANCA)	Mandates phase out of Stage 2 jet aircraft over 75,000 pounds, and established requirements regarding airport noise and access restrictions for Stage 2 and 3 aircraft	14 CFR part 161	
Section 506 of the FAA Modernization and Reform Act of 2012	Prohibition after 12/31/2015 of operation of civil subsonic jet airplanes with maximum weights of 75,000 pounds or less that do not meet stage 3 noise standards	14 CFR part 91	
FAA Reauthorization, 2024	Reauthorizes FAA through September 30, 2028	None yet	

Aircraft Noise Standards (14 CFR Part 36)

- Noise standards vary by design criteria and for most aircraft are in terms of "stages"
- Aircraft must meet Part 36 standards to obtain new or revised "type" or "airworthiness" certificates to operate in the U.S.
- The standards address noise limitations depending on aircraft type and weight
- Certification for most but not all – aircraft is based on three measurements: Landing, Sideline, and Takeoff


Measurement locations can vary with aircraft stage, number of engines, and lift mechanism. Some types are certificated based on level flyover.

Evolution of Aircraft Noise Stages in U.S.

EASA Certified Aircraft Noise Levels vs. Chapter 3 Limit Source: HMMH modified EASA jet aeroplanes noise database (Issue 24 of 10/12/2015), January 22, 2016; updated March 2017 https://www.easa.europa.eu/eaer/topics/technology-and-design/figures-and-tables -20.0 (EPNdB) Regional Jet ΔRJ □ SMR2 Short/Medium Range 2-engi Δ 15.0 Δ Long Range 2-engine ♦ LR2 0 Long Range 4-engine o LR4 Limits 10.0 -5.0 STAGE 2 COMPLIANT AIRCRAFT 1977 m 1990 1985 1995 2000 2010 2005 2015 2035 Chapter 0.0 Δ 8 0 0 5.0 0 0 Margin Relative to 2006 0 808 80 STAGE 3 COMPLIANT AIRCRAFT 10.0 -09 0 000 2017 15.0 STAGE 4 COMPLIANT AIRCRAFT ĝ≙ Η 20.0 A 00 0 Δ Δ Ê Cumulative B 25.0 80 \diamond \diamond Į ò ٥ 30.0 8000 8 35.0 **STAGE 5 COMPLIANT AIRCRAFT** 40.0

14

Noise Thresholds for Aviation Environmental Analyses

- Significant Impact
 - 1.5 dB increase within 65 DNL
- Less than significant impact
 - 3 dB increase between 60 and 65 DNL
 - 5 dB increase between 45 and 60 DNL triggers additional analyses for air traffic actions

"Proposed" DNL	Change in Noise Level from No Action Alternative to Proposed Action		
	Increase	crease Decrease	
< 45 dB	No Color	No Color	
45 to < 50 dB			
50 to < 55 dB	≥ +5 dB (yellow)	≤ -5 dB (magenta)	
55 to < 60 dB			
60 to < 65 dB	≥ +3 dB (orange)	≤ -3 dB (blue)	
≥ 65 dB		≤ -1.5 dB (green)	

Historical Background

Federal Interagency Committee on Noise ("FICON"), 1992

- 1.5 dB increase in DNL within 65 dB DNL
- 3 dB increase in DNL between 60 and 65 dB DNL

Expanded East Coast Plan ("EECP") EIS, 1992-3

FAA Order 7400.2M (Policies and Procedures for Air Traffic Environmental Actions)

FAA Order 5050.4B NEPA Implementing Instructions for Airport Actions

Order 1050.1F "Desk Reference" provides detailed guidance

Airport Noise Compatibility Planning (14 CFR Part 150)

The Aviation Safety and Noise Abatement Act of 1979 ("ASNA") required FAA to:

- Establish a single, uniform, repeatable system for considering aviation noise around airport communities.
- Establish a single system for determining noise exposure from aircraft, which takes into account noise intensity, duration of exposure, frequency of operations, and time of occurrence.
- Identify land uses which are normally compatible with various exposures of individuals to noise

14 CFR Part 150 prescribes standards and systems for:

- Measuring noise
- Estimating cumulative noise exposure using computer modeling
- Describing noise exposure
- Coordinating with local land use agencies
- Documenting the analytical process
- Submitting the documentation to FAA
- FAA and public review processes
- FAA approval or disapproval process

Airport Noise and Capacity Act of 1990, ANCA

Act Requirement	FAA Action
Required FAA to establish phase-out of Stage 2 aircraft over 75,000 pounds	FAA promulgated Part 91 amendment (1991)
Required FAA to establish regulations regarding analysis, notice, and approval of airport noise and access restrictions	FAA implemented through FAR Part 161 (1991)
Required FAA to develop "national aviation noise policy" by July 1, 1991	FAA published draft "Aviation Noise Abatement Policy 2000" on July 14, 2000 to replace the 1976 Federal Noise Abatement Policy

Notice and Approval of Airport Noise and Access Restrictions 14 CFR Part 161

Establishes the federal program for reviewing noise and access restrictions on the use of Stage 2 and 3 aircraft (and perhaps beyond)

- Requires extensive benefit cost analyses
- Requires extensive notice process
- Requires different level of analysis for Stage 2 and 3
- Requires separate analysis of effects on aircraft less than 75,000 pounds
- Encourages voluntary agreements
- Measure of last resort for land use compatibility

Noise Standards - California

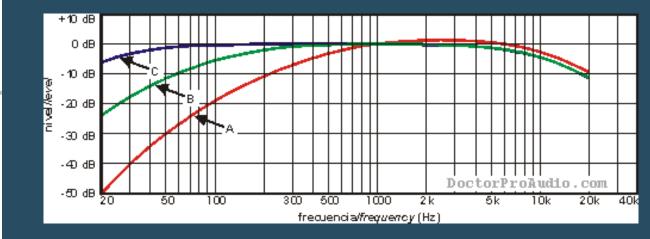
- The State of California enacted aviation noise standards for the Department of Transportation (Caltrans) Aeronautics Department
 - **Title 21** (Register 90, No. 10—3-10-90) Subchapter 6, Noise Standards
- California Noise Standards Include:
 - Definition of "noise problem" airport for the County in which the airport resides to make such a designation
 - Implementation by counties, airports and Caltrans
 - Variances to operate if incompatible land use exists
 - Noise monitoring system requirements and specifications

Title 21 Reporting Requirements

- County (not the airport proprietor) submits quarterly to Caltrans for each noise problem airport within 75 days of the end of each quarter
 - A map showing the noise impact boundary for the preceding "four calendar quarters" "as validated by measurement" and the location of the measurement locations
 - The annual noise impact area and number of dwelling units and people residing within
 - Daily noise measurement for the calendar quarter using the Community Noise Equivalent Level (CNEL) metric
 - Number of total aircraft operations for the calendar quarter
 - Number of aircraft operations for the highest noise level aircraft in the calendar quarter
 - Form DOA 671, dated 10/89

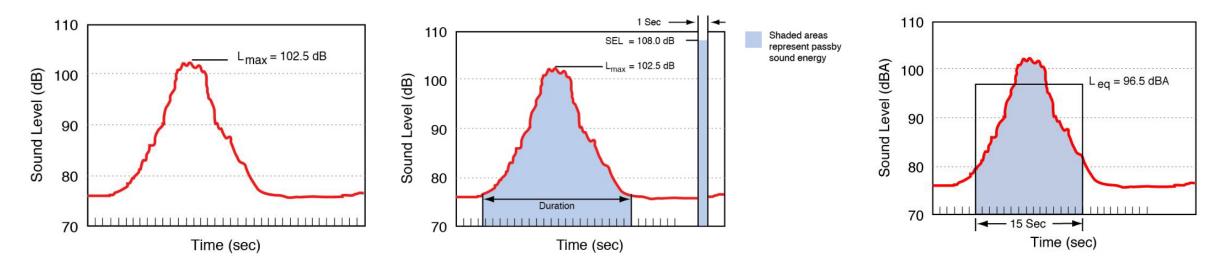
Measurement of CNEL

- To calculate daily CNEL from measurement of aircraft operations, Title 21 requires:
 - Threshold noise level of 55 dB to capture single noise events
 - Waiver is required for Caltrans to allow the level greater than 55 dB
 - Single Event Noise Exposure Level (SENEL) be used as the total noise energy of aircraft operation as it is the noise exposure, in decibels, of a single event measured over the time interval the noise level exceeds a predetermined threshold noise level
 - Hourly Noise Levels (HNL) be calculated from noise events associated with aircraft operations, retained for at least three years and made available upon request

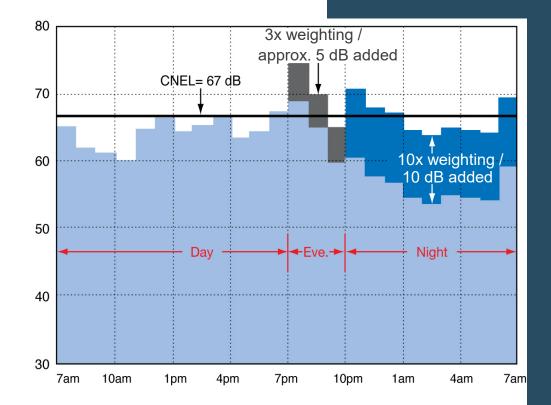

Noise Terminology

Noise Definition

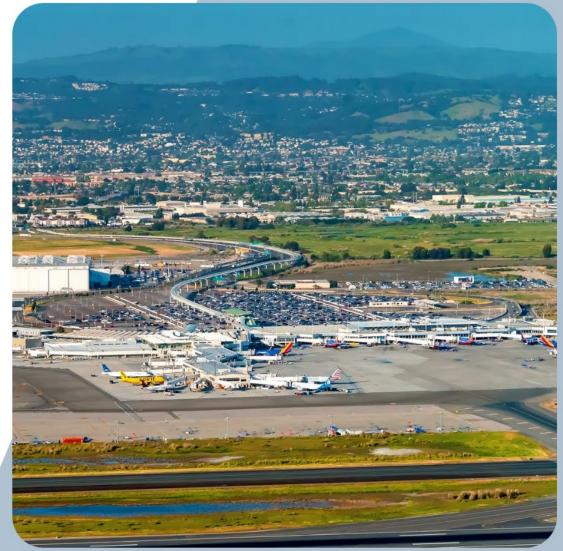
- Noise is simply defined as "unwanted sound"
- Sound results from small and rapid changes in air pressure our ears detect
- We characterize and judge sounds by:
 - Magnitude (loudness) in decibels (dB)
 - Frequency (pitch) in hertz
- The EPA has adopted the A-weighted sound level for environmental analyses
 - All sound levels presented in aircraft noise studies are A-weighted unless otherwise specified


Studies have resulted in loudness curves:

- A-weighted noise levels correlate to loudness of sounds in our everyday environment (relatively low energy)
- B-weighted noise levels correlate to medium energy sounds
- C-weighted noise levels correlate to high energy sounds


Noise Terminology

- Maximum A-weighted Sound Level (Lmax)
- Sound Exposure Level (SEL) and Single-Event Noise Exposure Level (SENEL – requires a threshold)
- Equivalent Sound Level (Leq)


Noise Terminology

- Community Noise Equivalent Level (CNEL)
 - Describes the noise dose for a 24-hour period
 - Accounts for event "noisiness" (SEL)
 - Accounts for number of noise events
 - Provides an additional weighting for evening and nighttime operations
 - Daytime is defined as 7:00 am to 7:00 pm
 - Evening is defined as 7:00 pm to 10:00pm
 - Nighttime is defined as 10:00pm to 7:00am

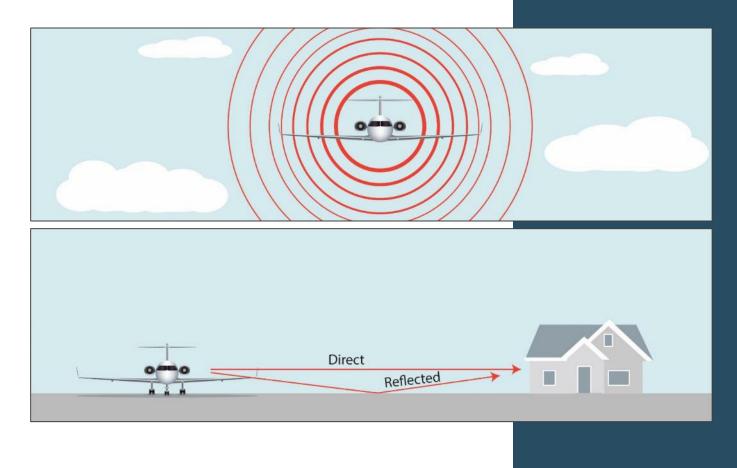
Aircraft Noise Sources and Propagation

Aircraft Noise Sources

Departure Noise

Arrival Noise

Ground Noise

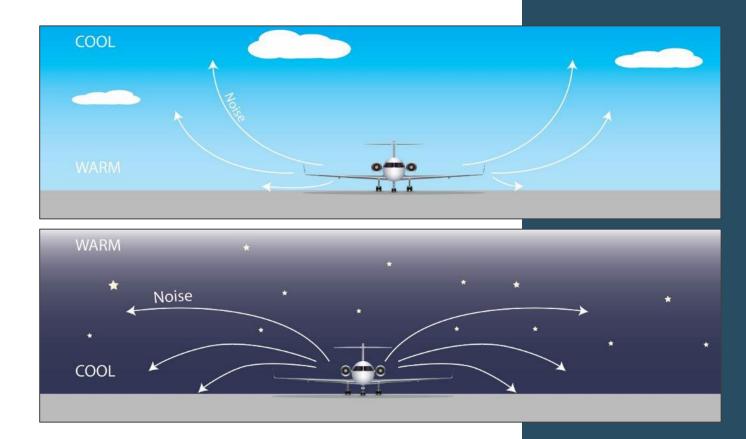

Sound Propagation

Spherical Spreading:

- Sound level decreases by 6 dB per doubling of distance
- Additional losses due to atmospheric absorption

Ground Effect:

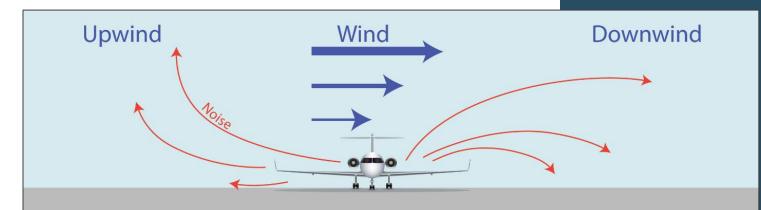
 Sound levels are lower when reflected off soft ground vs. hard ground



Sound Propagation

Refraction due to Temperature:

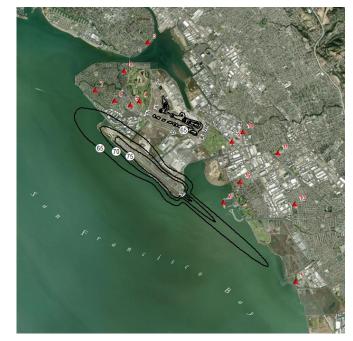
- Gradients in temperature cause the bending of sound paths
- Sound bends upward during a temperature lapse (cool air over warm)
- Sound bends downward during a temperature inversion (warm air over cool)



Sound Propagation

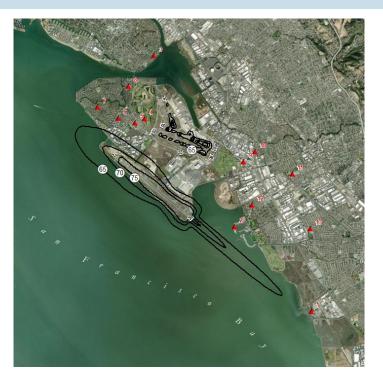
Refraction due to Wind:

- Gradients in wind speed cause the bending of sound paths
- Sound bends upward causing sound shadows in the upwind direction
- Sound bends downward increasing sound levels in the downwind direction
- Differences between upwind and downwind directions can be 20 dB


Measurements vs. Modeling

Measurements

- Provide historical noise levels at discrete points
- Difficult to attribute noise entirely to aircraft operations
- Reports noise levels from individual aircraft operations



Modeling

- Provides past or future noise levels throughout the study area
- Produces results from only aircraft operations
- Generates noise levels from average daily aircraft operations
- Calculates consistent, comparable outputs (if consistent inputs)



+	+	+	+	+	+	+	+
59.8	60.6	58.9	56.7	55.2	54.1	52.9	51.8
+	+	+	+	+	+	+	+
61.4	62.4	61.5	59.4	57.6	56.1	54.3	52.6
+	+	+	+	+	+	+	+
63.4	64.2	64.5	63.1	61.5	59.8	57.3	54.7
+	+	+	+	+	+	+	+
61.9	64.2	66.7	67.5	66.9	65.9	62.6	59
+	+	+	+	+	-	+	+
58.6	60.7	63.1	65.8	68.9	92.3	72.9	67.3
+	+	+	+	+	+	+	+
55.4	57.1	58.9	61	63.4	66	69	74.6

Questions?

